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The human T-cell leukemia virus type I (HTLV-I) is the causative
agent for adult T-cell leukemia (ATL) and HTLV-I-associated
myelopathy/tropical spastic paraparesis (HAM/TSP). Approxi-
mately 5% of infected individuals will develop either disease
and currently there are no diagnostic tools for early detection
or accurate assessment of disease state. We have employed
high-throughput expression profiling of serum proteins using
mass spectrometry to identify protein expression patterns
that can discern between disease states of HTLV-I-infected
individuals. Our study group consisted of 42 ATL, 50 HAM/TSP,
and 38 normal controls. Spectral peaks corresponding to
peptide ions were generated from MS-TOF data. We applied
Classification and Regression Tree analysis to build a decision
algorithm, which achieved 77% correct classification rate
across the three groups. A second cohort of 10 ATL, 10 HAM
and 10 control samples was used to validate this result. Linear
discriminate analysis was performed to verify and visualize
class separation. Affinity and sizing chromatography coupled
with tandem mass spectrometry was used to identify three
peaks specifically overexpressed in ATL: an 11.7 kDa fragment
of alpha trypsin inhibitor, and two contiguous fragments (19.9
and 11.9 kDa) of haproglobin-2. To the best of our knowledge,
this is the first application of protein profiling to distinguish
between two disease states resulting from a single infectious
agent.
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Introduction

Infection with the Human T-cell Leukemia virus type I (HTLV-I)
can result in a number of disorders, including an aggressive
T-cell malignancy, adult T-cell leukemia (ATL),1 and a chronic,
progressive neurologic disorder termed HTLV-1-associated
myelopathy/tropical spastic paraparesis (HAM/TSP). Globally,
the estimated numbers of people infected with HTLV-1
approaches 20 million.2,3 In endemic areas including southern
Japan, the Caribbean basin and parts of western Africa and
South America, where infection rates range from 2 to 30%, these
diseases are the major causes of mortality and morbidity.4

For example, ATL is the most common form of non-Hodgkin’s
lymphoma in Southwestern Japan and HAM/TSP is the

most common form of neurodegenerative disorder in central
Brazil.2–4 Although there are adequate methods for determining
if people are infected with HTLV-I, there are no diagnostic tools
available for predicting disease status. The existing ‘diagnostic
markers’ for ATL currently are immunoassay for HTLV-I gene
products, HTLV-I-specific antibody production, and detection of
HTLV-I DNA.5 These parameters have little discriminating value
among HTLV-I diseases, clinical subtypes, or severity of disease.
There has been some utility of immune activation markers as
predictors of outcome, which, although effective within ATL, are
not diagnostic for HAM/TSP or other HTLV-I-related diseases as
a whole.6

Survival of patients with ATL is grim and has a mean life
expectancy of 9 months from the time of diagnosis.7 The
treatment of patients with ATL has been largely unsuccessful,
resulting in little consensus on the best treatment regimen. The
situation is no better for HAM/TSP in that therapies have been
confined to approaches shown to be successful with other
neurodegenerative diseases such as multiple sclerosis.8

Although several new strategies for immune suppression are
being initiated, these treatments will not eliminate the infected
T-cell population and would presumably require long-term
immunoregulation for this chronically progressive disorder.

In light of the lack of effective treatment in later disease states,
it would be useful to know early in infection who may be at high
risk for developing disease. In the early stages, aggressive
treatments to eradicate the virus may prove effective since viral
load is believed to be low. These treatments, however, may
have serious side effects that would contradict their use in the
HTLV-I-infected asymptomatic population at large. Addition-
ally, conversion from HAM to ATL, although very rare, is a
complication that is difficult to establish short of lymphade-
nectomy. The need for clear distinction between ATL and HAM
via noninvasive approaches to identify the highest risk group
would have obvious merit.

Surface Enhanced Laser Desorption Ionization (SELDI) time-
of-flight mass spectrometry (TOF-MS) has received tremendous
attention in the field of cancer diagnostics.9–11 The primary
advancement that sets SELDI apart from other instrumentation
utilized for protein expression profiling is the employment of the
ProteinChip, an ionization source surface that has been
chemically treated to incorporate an affinity layer, which is
otherwise similar to Matrix-Assisted Laser Desorption Ionization
(MALDI). Previously, we established the utility of SELDI-TOF-
MS in disease diagnosis by application to transitional cell
carcinoma in bladder.12 Subsequently, others and we have
shown that the application of learning algorithms to the time-of-
flight data results in highly accurate diagnostic approaches for
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prostate, breast, and ovarian cancer.9,10,13,14 One of the
challenges of successful application of serum protein expression
profiling to early cancer detection is the ability to detect
potentially rare protein events that signal early tumor formation.
In this study, we have applied this technology to a human
infectious disease that results in both hematological and
neurological disorders, each of which might be expected to
result in significant protein changes in blood. SELDI-TOF-MS
coupled with a regression tree analysis was used to distinguish
between HTLV-I-uninfected healthy individuals and HTLV-I-
associated ATL or HAM/TSP.

Methods

Patient population and samples

The patient population consists of 42 individuals with ATL, 50
patients with HAM/TSP, and 38 healthy uninfected individuals
seen at the National Institutes of Health, Bethesda, MD, on a
number of IRB-approved studies. The ATL patients had a mean
age of 44.3 years (range 25–69) and a male/female ratio of 0.73.
The ethnicity of the cohort was 60% Afro-Caribbean, 17%
African-American, 10% African, 10% Caucasian, and 3%
Hispanic. The ATL patients were diagnosed as chronic (10%),
acute (50%), smoldering (10%), and clinical indistinct (30%). In
all, 50% of the patients were previously untreated, 33% received
prior chemotherapy or combined AZT/interferon-alpha, and the
treatment status was unknown to the remaining patients. The
diagnosis and classification of HTLV-I-associated ATL was made
using the WHO classification and Shimoyama criteria.

The HAM/TSP patients had a mean age of 49.7 years (range
13–80), a male/female ratio of 0.45, and a mean duration of
disease of 9.3 years (range 2–23). The healthy control group had
a mean age of 40.5 years (range 19–56), with a male/female
ratio of 0.32. The diagnosis of HAM/TSP was assessed according
to the WHO guidelines. All HAM/TSP patients were evaluated at
the NIH Clinical Center for progressive spastic paraparesis and
were serologically shown to be HTLV-I Western blot reactive.
The range of disability as assessed by the expanded disability
status scale (EDSS) was 2.0–8.0, with a median of 5.5. Serum
samples were obtained prior to any immunomodulatory
therapy, aliquoted and frozen for future proteomic studies.

Sample acquisition and preparation

Whole blood was drawn from individuals following proper
consenting under NIH protocol 98N-047. The blood was
collected in a 10 cm3 serum separator vacutainer tube and
centrifuged for 15 min at 1500 g to separate out the serum
fraction. Serum was immediately transferred to ice. The samples
were then aliquoted into 500 ml fractions and stored at �70 to
�801C immediately following phlebotomy. Each fraction was
limited to a single freeze–thaw prior to analysis. All serum
samples were collected following the same protocols as
described above.

SELDI-TOF-MS

We employed an in-house program to assign samples in a
randomized matrix pattern to prevent bias between triplicate or
clinical status and chip spot position. All samples were
processed in triplicate and the arrayed chips were read in a

48-h period. The matrix codes were assigned by an individual
separate from the team that processed the samples so that each
phase of the study was blinded with respect to the operator. The
code was broken during the classification stage.

All sample and chip processing was performed using the
BioMek 2000 workstation (Beckman) adapted to run the
ProteinChip. Briefly, 20ml of serum is pretreated with 8 M urea,
1% CHAPS, and placed on a MicroMix Shaker (DPC) for 10 min
at 41C. A further dilution is made in 1 M urea, 0.125% CHAPS,
and PBS. A volume of the diluted serum (100ml) is then added to
the ProteinChips with the aid of a bio-processor. ProteinChipss

are then incubated at room temperature for 30 min with shaking,
followed by washes of PBS and water. Arrays were allowed to
air dry and then spotted with sinapinic acid in 50% (v/v)
acetonitrile and 0.5% (v/v) trifluoroacetic acid. The ProteinCh-
ipss were analyzed using the SELDI ProteinChips System (PBS-
II, Ciphergen Biosystems, Inc.). Spectra were collected by the
accumulation of 192 shots in the positive mode. The protein
masses were calibrated externally using purified peptide
standards (Ciphergen Biosystems, Inc.) Instrument settings were
optimized using a pooled serum standard.

Data analysis

Before analysis, the data were divided into two sets as follows: a
training set, which consisted of 32 ATL, 40 HAM, and 28 normals,
and a test set consisting of the remaining samples. Spectra were
analyzed with the Ciphergen ProteinChips software (version 3.0)
and normalized using total ion current. Peak labeling and
clustering were performed using the Biomarker Wizard tool in
the software, exported into a spreadsheet, and the intensity values
for each peak were averaged for triplicate samples. These
processed spectral data were then analyzed by Classification
and Regression Tree (CART) using the BioMarker Patterns
Program (Ciphergen Biosystems) to develop a classification tree.

In the case of analysis of the second validating test data set, 10
ATL, 10 HAM, and 10 controls were run in triplicate as
described above. However, the peak identification step varied
from that employed with the first data set. Specifically, the peak
list generated from the first study was used to ‘cluster’ or identify
peaks from the validating test set using a 0.2% mass window
bin. The averaged normalized intensity values for each of the
‘peaks’ in the validating test set data that matched the ‘peaks’ in
the decision algorithm were applied to the ‘cut-off’ values of the
decision node.

Classification algorithm

Details regarding CART and its application to the analysis of
protein expression profiling data have been described else-
where.11,15,16 Classification trees were constructed using the
training set, and a V-fold cross validation process. Multiple
classification trees were generated using this process, and the
best performing tree was chosen for further testing using the
cross-validation results. The reported accuracy of the selected
classification tree was determined by challenging with the
blinded test set.

Protein isolation and partial purification

To purify peaks observed in the SELDI spectra, 200 ml of serum
samples with and without the peaks of interest were diluted with
the same volume of 8 and 1 M urea/CHAPS as above. The total
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volume of the scaled-up sample was 7.5 ml. Samples were then
added to Talon-spin immobilized metal affinity columns
(Clontech, Palo Alto, CA, USA), which were charged with
CuSO4 to mimic the IMAC Cu2þ surface used on the SELDI
chips. After washing with PBS, the bound proteins were eluted
from the column as recommended according to the manufac-
turer’s protocol, with an elution buffer containing imadiazole.
The total elution volume was 300ml. A parallel sample was
eluted in high pH and subsequently neutralized prior to analysis
by SELDI-TOF-MS. A volume of 12ml of each of the eluates
representing approximately 24 mg was run on a NuPAGE 4–12%
Bis–Tris gel under reducing conditions. Gels were stained with
the SilverQuest staining kit (Clontech).

Alpha-1-antitrypsin immunodepletion

In all, 20ml of serum was processed in urea/CHAPS and diluted
in PBS using the same volumes as those employed for the SELDI
analysis above. The diluted serum was incubated with 100ml
protein A-Sepharose beads (BSA treated and washed in urea
buffer) for 2 h at 41C. The supernatant was collected after a brief
spin and the sepharose beads containing bound serum IgG were
saved. A volume of 6ml (1 mg/ml) of rabbit anti-human alpha-1-
antitrypsin antibody (DakoCytomation Carpinteria, CA, USA)
was then added to the ‘IgG-cleared’ serum supernatant. PBS was
added to bring the final volume of each sample to 1 ml and
samples were then incubated overnight at 41C. Protein A-
Sepharose beads (150 ml) were then added and the samples were
incubated at 41C for 1–2 h. Following centrifugation, the
sepharose beads containing the bound Ag–Ab complex and
the ‘Ag-cleared’ supernatant were collected. The Ab–Ag
complex-bound sepharose beads were washed four times with
urea buffer in bulk. Elution of the beads was performed by
incubation with 100ml of elution buffer (0.15 M NaCl, 0.1 M

acetic acid, pH 3.0) and shaking for 30 min at room
temperature. Samples were spun briefly to collect the elution
and 50ml Tris, pH 9.0, was added to neutralize. SELDI analysis

was performed using IMAC3-Cu2þ chips, with 100ml of the
fractions placed on each array for 30–60 min.

In-gel trypsin digest and LC-MS/MS analysis

SDS-PAGE gel slices were cut into 1–2 mm cubes, washed 3�
with 500 ml ultra-pure H2O, and incubated in 100% acetonitrile
for 45 min. If the gel was silver stained, the stain was first
removed with SilverQuestt destaining solution following the
manufacturer’s instructions. The material was completely dried
in a speed-vac and rehydrated in a 12.5 ng/ml modified
sequencing grade trypsin solution (Promega) and incubated in
an ice bath for approximately 45 min. The excess trypsin
solution was then removed and replaced with enough 50 mM

ammonium bicarbonate, pH 8.0, to cover the gel slice, typically
50 ml. The digest was allowed to proceed overnight at 371C.
Peptides were extracted 2� with 25ml 50% acetonitrile, 5%
formic acid, and dried in a speed-vac. The peptides were
resuspended in 5% acetonitrile, 0.5% formic acid, 0.005%
heptafluorobutyric acid (Buffer A), and 3–6ml applied to a 70mM

ID, 15 cm Magic C18 reverse-phase capillary column. Peptides
were eluted with a 5–80% acetonitrile gradient (Buffer Aþ 95%
acetonitrile) and analyzed on a ThermoFinnigan LCQ DECA XP
Ion Trap tandem mass spectrometer in positive ion mode. For
each scan, the three highest intensity ions were subjected to MS/
MS analysis. Sequence analysis was performed with Sequestt
using an indexed human subset database of the nonredundant
protein database from NCBI.

Results

Reproducibility of SELDI-TOF profiling of cohort
samples

A key aspect of any clinical approach for reliable disease
diagnosis and early detection is reproducibility. We have

Figure 1 Reproducibility of SELDI profile. (a) The same serum sample was run 6 months apart. The top panel (1) is the SELDI spectra initially
obtained, and the bottom panel (2) is the spectra obtained when the sample was run 6 months later on the same instrument. (b) Three separate
samples from each class were assayed and the resulting spectra were normalized to total ion current. The expression values are displayed as
relative intensity on the same absolute scale. The classes are ATL (one), HTLV-associated myelopathy (22), and normal control (Normal).
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established optimal performance parameters beyond the stan-
dard calibration steps that enable us to optimize and monitor the
performance of the instrument.17 Using these parameters, we
have successfully synchronized multiple instruments and have
maintained this synchrony over a 3-year period.

In Figure 1, we show spectra from three separate representa-
tive individuals from each class. The variation between identical
sample spectra is less than 0.1% for mass designation and
expression amplitude displayed a CV of 15–20%.

Identification of differentially expressed m/z peak values

After calibration and normalization of the entire data set,
consistent peak sets or clusters present in at least 10% of
the samples were generated based on a mass window of 70.2%
of mass. Intensity values were averaged between the triplicates
and reported for each peak set and differences between groups
identified. Thus, peaks were identified based on being greater
or lesser expressed in ATL, HAM, or healthy individuals. Using
this selection process, a number of potential classifier peaks
were found for ATL and HAM/TSP, respectively. Table 1 is a
partial list of peaks that have been demonstrated to
have discriminatory power, and are ranked by P-value.
We show some examples of peaks that represent the differential
expression observed between groups. Some of the peaks were
present in normal and HAM/TSP sera, but not in ATL (for
example, a peak at 3977 m/z shown in Figure 2a and a peak at
5360 m/z shown in Figure 2b), while others were only
detectable in ATL sera (for example, peak 4597 m/z shown in
Figure 2a). A peak at 11 738 m/z, which was present in most
samples, was overexpressed in ATL sera compared to either
HAM/TSP or control (Figure 2b).

Development of a decision tree classification algorithm

The verification of the utility of individual peaks as diagnostic
biomarkers was addressed using CART analysis. The CART
software uses the ranked peaks and evaluates for the ability to
distinguish between classes and then applies fit-value assign-
ments to each class. We directed the algorithm to segregate via
three comparison schemes: ATL vs N; ATL vs HAMþN; and
HAM vs N. The tree development is based on establishing
simple cutoffs for expression values of selected peaks. Each of
the decision nodes partitions the data into two groups, which are
subsequently divided at secondary nodes until the optimal tree
is ‘grown’. The formed trees are subjected to ‘pruning’; basically
branches are removed and the ‘cost’ of the removal determined
to establish a minimal tree size. The optimal tree that does not
over-fit the data is then chosen using a cross-validation
approach.

We have illustrated this process by presenting the
actual relative values in a scatter plot for each decision peak
in the ATL vs N tree (Figure 3). In this decision tree, peaks
at 6136 and 11 768 m/z were able to distinguish between ATL
and N effectively. However, the best separation was achieved
with the combined use of these peaks. The ability to distinguish
ATL from N was achieved with 97% sensitivity and 96%
specificity, using a V-fold cross validation of the training set. The
blinded test set correctly classified 90% (9/10) of ATL and 80%
(8/10) of N.

Although it is useful to distinguish ATL from healthy
individuals, the most useful clinical separation is between
ATL and non-ATL (both HAM and N). In order to achieve

this separation, we first addressed two didactic trees, ATL
vs HAMþN and HAM vs N. The application of the regression
tree analysis resulted in the trees shown in Figure 4. Training
with cross-validation for the ATL vs HAMþN resulted in
91% sensitivity and 87% specificity. The blinded test set
achieved 80% correct classification of ATL (8/10) and
85% correct classification of HAM/TSP and N (17/20). The
subsequent decision tree training with cross-validation, for

Table 1 Most differentially expressed peaks

Cluster P-value m/z average

P-values (ATL vs Normal)
10 0.0000000002 4666.39a

13 0.0000000012 5360.86a

15 0.0000000019 5930.34a

3 0.0000000108 3904.93a

16 0.0000000152 6136.67a

35 0.0000002772 9323.90a

36 0.0000020816 9531.79a

22 0.0000037021 7796.78a

25 0.0000078129 8004.92a

41 0.0000085632 11 769.35b

59 0.0000140854 78 926.34
42 0.0000261106 11 950.48b

P-values (HAM vs Normal)
3 0.0000016437 3904.93a

59 0.0000027555 78 926.34a

57 0.0000137336 66 714.96a

51 0.0000203647 44 472.08a

50 0.0000362733 40 026.73a

58 0.0000490222 74 820.53a

45 0.0000659447 14 122.64a

33 0.0000915497 9174.99b

31 0.0000949140 8966.85b

56 0.0002061587 60 989.01a

49 0.0002531877 33 542.23a

48 0.0004617588 28 159.18a

P-values (ATL vs HAMc)
10 0.0000143257 4666.39a

13 0.0000313181 5360.86a

16 0.0000313181 6136.67a

15 0.0000507364 5930.34a

42 0.0001128584 11 950.48b

41 0.0005834305 11 769.35b

35 0.0050737586 9323.90a

22 0.0094501735 7796.78a

46 0.0094501735 14 737.49b

18 0.0121501941 6880.98b

43 0.0132898026 13 396.08b

40 0.0142055150 11 131.00a

P-values (ATL vs N+HAM)
10 0.0000000002 4666.37a

13 0.0000000032 5360.91a

15 0.0000000059 5930.42a

16 0.0000000089 6136.71a

42 0.0000024228 11 950.49b

41 0.0000044566 11 769.44b

3 0.0000056628 3904.94a

35 0.0000063774 9323.96a

22 0.0000137628 7796.86a

25 0.0000368387 8004.93a

36 0.0000779729 9531.85a

20 0.0004684201 7595.06a

aUnderexpressed in disease state.
bOverexpressed in disease state.
cIn the case of ATL vs HAM, ATL is the disease state.
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HAM vs N, resulted in a sensitivity of 85% and specificity
of 93%. The results of the blinded test set in this group achieved
90% correct classification of HAM and 90% correct classifica-
tion of N. When we combined the two decision trees in
series and challenged them with all the blinded test samples,
we achieved 80% correct classification of ATL (8/10), 70%
correct classification of HAM (7/10), and 80% correct classifica-
tion of N (8/10). The decision structure for the combined tress is
shown in Figure 4c. These results were achieved using a simple
CART approach, and we anticipate that improvements in the
node decisions (multiple peaks) as well as boosting approaches
such as we have successfully applied to other SELDI data sets14

would dramatically improve the correct classification rates.
However, the simplicity of this design suggests that the protein
peak profiles are significant in discerning HTLV-I disease.

Evaluation of the expression of 11 768 m/z peak across
populations and classification of a separate blinded
validation test group

To demonstrate the ability of the 11 768 and 6136 m/z peaks
to segregate patients diagnosed with ATL from healthy

individuals, we used the absolute cutoff values for these
peaks in a scatter plot representation. In Figure 5a, the
contribution of each of these peak values to the discrimination
between groups can be visualized. The single value of
the 11 768 m/z peak alone gave good separation between
ATL and healthy individuals, reflecting the fact that it is
overexpressed in ATL. We also tested the robustness of the
classifier across patient samples. In this exercise, we tested the
established combined decision tree described earlier (Figure 4c)
with data from a follow-up study run 1 year later. In this study,
the recruitment criteria and case groups were the same,
but included serum from an entirely different group of patients.
This completely separate blinded validation test group consisted
of 10 ATL, 10 HAM, and 10 healthy individuals. When the
data were applied to the decision structure, we achieved a
correct classification rate of 73%: with 80% of ATL,
89% healthy individuals, and 50% of HAM/TSP correctly
classified. Interestingly, the overall effectiveness of the decision
algorithm with respect to class was retained with HAM/TSP
being misclassified as healthy individuals. In addition, when
we examined the 11 768 m/z peak in the test data set, the
ability to discriminate using the same cutoff value was retained
(Figure 5b). Thus, although validation upon a larger population

Figure 2 SELDI data showing class-specific peaks. (a) A peak absent in ATL at m/z 3907 is shown in the left panel and a peak unique to ATL
right panel is visible at m/z 4597. (b) Gel-view representation of SELDI spectra showing a peak absent in ATL (m/z 5360) and a peak expressed at
different levels in all classes (m/z 11 738).
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is needed, the chosen peak expression pattern appears to be
robust between study populations. The slight reduction in
overall correct classification of all the three disease groups
was due to the reduced segregation between the HAM/TSP and
control groups and should be improved when this study is
reproduced in the larger population.

Sequence identification of ATL ‘diagnostic’ peaks

As the application of protein expression profiling such as we
describe here becomes more widespread, determining the
identity of the protein/peptides that are differentially expressed
between individuals with a disease and healthy control will
allow for development of immunodiagnostic approaches as
stand-alone or complimentary to profiling. In addition, char-
acterizing these peaks will help validate the approach by
identification of the specific proteins and molecular events
involved in disease onset and progression. We have developed a
purification scheme for identifying the SELDI-designated protein
peaks. Two samples, one overexpressing and one underexpres-
sing the desired peak, were identified for isolation and
purification by examining the SELDI profiles of all samples
(Figure 6). The isolation and identification strategies were
applied to the pair so that a didactic comparison is available
throughout the purification scheme. Specifically in this case, the
paired samples were first reacted with a Cu2þ affinity column
that emulates the on-chip affinity process of the SELDI-TOF-MS
IMAC ProteinChip. This step also greatly reduces serum
globulins without application of secondary fractionation steps.
The affinity eluate was confirmed to contain the target peaks via
reapplication onto SELDI-TOF-MS and then applied to a single
dimension SDS-PAGE and silver stained. The visible differen-
tially expressed bands within the targeted size range were
excised in pairs and analyzed by capillary liquid chromato-
graphy coupled to electrospray tandem mass spectrometry.

Using this approach, we identified the diagnostic peaks
as fragments of common serum proteins. Specifically, we
identified the 11.7 m/z SELDI peak that was overexpressed in
ATL as being a discrete fragment of alpha-1-antitrypsin
(Figure 7a). We also identified two other peaks overexpressed
in ATL, 11 950 and 19 872 m/z, as being two contiguous
fragments of haptoglobin-2. Each of these peptide identities was
supported by sequence coverage consistent with the proposed
mass. Subsequent verification that the identified protein/peptide
gives rise to the observed ‘diagnostic’ peak was accomplished
by immunodepletion and is shown for alpha-1-antitrypsin
(Figure 7b).

Discussion

A particular shortcoming of many studies involving the
discovery of diagnostic biomarkers is the lack of preliminary
evidence suggestive of the ‘robustness’ of the marker discrimi-
nation. In this study, we have structured our analysis to
incorporate separate training and test data sets. This practice
provides some insight into the expected true error of the
classification algorithm. In addition, we have provided a second
‘validating’ test set derived from a separate patient cohort with
similar disease classes. The ability to retain an equivalent
accuracy in discrimination across the two patient cohorts is a
measure of the robustness of the chosen biomarker. Thus,
although these findings need to be verified in larger cohorts of
patients, the results suggest that the profile generated from the
selected proteins/peptides is class-specific.

The ability to identify a serum signature profile in a human
infectious disease, to our knowledge, has not been reported
previously. Moreover, this serum profile was able to distinguish
a clinical outcome of a human retroviral infection. While serum
signature profiles have been demonstrated for solid tumors
(prostate, breast, ovarian cancers), no serum protein profiles

Figure 3 Application of CART and development of a decision tree for distinguishing ATL from normal healthy individuals (N). (a) The decision
tree graph. The primary decision nodes are m/z 6136 and m/z 11 768. The terminal nodes are indicated as red circles. The training with v-fold
cross-validation resulted in 97% sensitivity and 96% specificity. (b) Scatter plot diagram for the primary and secondary tree decision nodes.
A scatter plot depiction of the relative variation in expression values for each decision event for the training set is shown. The decision cutoff
is represented by a horizontal line; samples are referred to the secondary node, which is applied based on the value displayed.
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have yet been identified that correspond to hematologic
cancers. In this study, we have identified several of the
component proteins/peptides that comprise the expression
profile specific to ATL. Perhaps, as HTLV-I is a disease that
infects circulating immune cells (predominantly CD4þ ), it is
reasonable to suggest that a robust signature profile pattern may
be more likely to be expressed in serum.

Both alpha-1-antitrypsin and haptoglobin-2 are acute-phase
reactant proteins and as such play a role in a variety of
cellular pathologies including diseases that involve inflamma-
tion response, hemolysis, and, in general, dramatic changes

to blood homeostasis. Specifically, the serpin alpha-1-antitryp-
sin has been shown to be intimately involved in lymphocyte
activation and metastasis.18 Likewise, haptoglobin-2 is a serum
protein which appears to be a natural suppressor of T-helper
cell function as well as being a marker of T-cell activation.19

In addition, haptoglobin levels and discrete protein modifica-
tions of haptoglobin are proving to be valuable markers
for a variety of diseases of inflammation, infections, and
neoplasia.20–22 In our approach, we found specific stable
fragments of these proteins to be useful in discriminating class,
which suggest that these are disease-specific proteolytic events

Figure 4 Combined decision tree for separation of ATL, HAM, and normal healthy individuals. (a) Decision tree developed to separate ATL
from the combined class of HAM and healthy individuals. The m/z values and the intensity cutoff values for each decision node are shown. (b)
Decision tree developed to separate HAM from healthy individuals. The m/z and intensity cutoff values are shown. (c) Decision tree developed by
combining the two trees shown in (a) and (b). This tree was used as a test tree only and the reported value is the percent of samples that were
correctly classified. The samples denoted with an asterisk are those samples that were misclassified.
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that are amplified through the direct detection of enzymatic
products.

Indeed, the 19.9 and 11.9 kDa fragments represent contiguous
halves of the same protein, haptoglobin-2. Interestingly,
a unique consensus site for a proline protease exists in
haptoglobin-2, the cleavage of which would result in the
production of two fragments of comparable mass. Our sugges-
tion that an endogenous protease is the direct biomarker event is
reminiscent of the observation of an increase in serum levels of
the serine protease PSA as a marker for prostate cancer. Thus,
the direct event is the increase in the expression of a specific
protease and the secondary events would be the cleaved protein
targets such as were identified in our study. It is interesting to
speculate that the proteolytic fragments of the whole proteins
may reveal more fine detail of hematopoietic changes that occur
during leukemia. Specifically, the fragmentation pattern of a
substrate protein for a leukemia specific protease may provide a
more accurate map of disease development. The link between
these proteins and cell homeostasis, immune response, and
inflammation make them ideal candidates as putative biomar-
kers that signal early disease and potentially early signs of
progression.

In summary, we have shown that protein expression profiling
using SELDI is an accurate and sensitive approach to differ-

entiating neurological from hematological disease following
HTLV-I infection. We have achieved very high sensitivity and
specificity in a blinded test of the algorithm, especially for ATL.
The process appears to utilize the differential expression of
fragments of relatively abundant sera proteins. These fragments
are potentially the specific products of induced proteases,
suggesting that the SELDI-assisted protein expression profiling
approach monitors the integrity of classes of sera proteins that
may be useful sentinels for disease development. We are
actively investigating the identity of these proteases in the hopes
of understanding disease development in ATL and to assist in
improving HTLV-I disease diagnostics. In addition, we are
undertaking an analysis of patient serum derived in a long-
itudinal study in order to evaluate the predictability of this
marker for early disease detection and assessment of disease
development. While not the focus of this report, protein
expression profiling may be a powerful tool to determine if
there are serum signature profiles and/or serum proteins that can
predict disease outcomes in HTLV-I asymptomatic carriers.
Specific to this clinical goal, we have recruited a large number
of asymptomatic infected individuals, multiple sclerosis
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Figure 5 The 11 768 m/z peak is a robust discriminator. (a) A
scatter plot representation of the ability of the 11 768 and 6136 m/z
peaks to segregate between ATL and normal samples. The absolute
normalized values for each peak found in ATL (red squares) and
control (blue circles) were plotted on each axis. (b) The relative
intensities for the 11 768 m/z peak were plotted for the blinded
validation sample set. The sample set was derived from patients other
than those used for the algorithm development.

Figure 6 Expression profile and gel view of the region surrounding
the m/z 11 768 peak. This peak (arrow) was present in all samples.
Two samples from ATL, HAM, and control group and one from an
asymptomatic carrier as indicated are shown. The upper panel is the
spectral view and the lower panel is a gel view of the same data. The
intensity values are relative to the normalized expression values.
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patients, and other T-cell leukemia as comparative classes. We
will employ our successive cohort design with blind validation
test sets utilizing samples from multiple clinical sites in an effort
to identify a robust biomarker of HTLV-I disease.
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